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SUMMARY AND INTRODUCTION

\«4'1‘5’

In this report we use a linear fractional transformation to obtain
rational approximations to the response of a physical system which is defined
by a second order nonlinear differential equation with constant coefficients.
The initial approximations are constructed in the absence of damping. These
approximations are then extended to include the case of a small damping term.
The approximations are particularly effective in the case of slight damping
and a large nonlinear restoring force.

In Section I we develop the recurrence relations which define the
approximations. Section II has the treatment of a small damping term and also
gives examples of the validity of the approximations.



I. THE MASS SPRING OSCILIATCR EQUATION IN THE ABSENCE OF DAMPING

The mass spring oscillator equation

y' tay +byt +cyo +d =0, y(0) =a,, y'(0) = b, (1.1)

wvhere 2 , b, ¢ and & are constants is well known. The classical approxi-
mations to {(1.1) are of limited use. They are not easily constructed and
little is known of their convergence properties. In the solution of numerous
linear problems, approximation by rational functions, that is, the ratio of

two polynomials, has proved very effective. A natural question is to see if a
like procedure can be used for classes of nonlinear equations. As a first step
in this direction, it is of interest to examine rational approximations to
(1.1).

If the solution of a differential equation has a singularity, the
radius of convergence of the Taylor's series solution about x = a cannot
exceed the distance from & +to the singularity. Obviously, integration
schemes based on polynomials are inadequate near a singularity. Approximations
based on rational functions, on the other hand, show a greater degree of flexi-
bility. If the singularity is a pole, as in (1.1), the rational function will
mimic the behavior of the solution near the pole so effectively that often the
position of the pole can be quite accurately determined from the approximation.
We have also found such approximations to be effective in the neighborhood of
other singularities, such as movable branch points.

Since the phenomenon of movable critical points is one of the biggest
impediments to the approximate solution of nonlinear differential equations,
the technique studied in this report, as well as the idea of rational approxi-
mations in general, may be fruitfully extended to large classes of nonlinear
problems.

IT. A GENERALIZED MASS SPRING OSCILIATCR EQUATION

It is convenient to generalize the problem by studying the first
order equation

2 ) 2 3 4 =
P (y')" +Qyy' + Royzy' +8 Yy vTy VY +Wy tYy +X =0,

y(0) = a5 , (2.1)



where the coefficients in (2.1) are polynomials in x . Observe that (2.1)
can be specialized to give (1.1), since the coefficients in (1.1) are constants.

In Ref. 1, Merkes and Scott developed continued fraction expansions
for the solution to the Ricatti equation by using a sequence of linear frac-
tional transformations. In Ref. 2, Fair constructed the main diagonal Pade
approximations to the solution of the Ricatti equation by employing the
T-method. For details on the T-method see Refs. 3 and 4.

In this section we utilize the linear fractional transformation to
develop rational approximations to the response of a dynamical system described

by the nonlinear differential equation (2.1). We assume that (2.1) has a
series solution of the form

[se]
y = j{ ckxk s (2.2)
k=0

and further that y possesses a continued fraction representation of the form

a
o]
y = a ’ (2.3)
X
L+ —21
anXx
1+ —2
1+ .
which, by Ref. 5, is true if
Co ¢ ceseaess O Com-1
0 ¢y Cop.y ©
0 0 0 .
Ay = . . . £0
0 .
0] Com-1 0. . Copy 0
Com-1 O ceeennn . 0 Com

(Eq. (2.4) concluded
next pege)




and

Co 0. .. 0
0 cl 0] .
d2m+l = . 0 . . ?é 0
L] » . O
0 e o e e Com+l
m=0,1,2, ... (2.4)

For the general development of the theory of continued fractions and the
relations defining their approximants, see Ref. 5.

If the continued fraction (2.3) is truncated, there results a
rational approximation to the solution of (2.1). Generally, the sequence of
convergents of the continued fraction converges much faster than the sequence
of partial sums of the power series representation (2.2). This is especially
true when the function has a pole near the origin.

Now the even approximants of (2.3) are known as the main diagonal
Pade approximations which have the following properties. Let

n
k
A gié an, k¥
n =4
Yo = 2 = O (2.5)
n k
2: bn,kx
k=0

be the n'? order main diagonal Padé approximant. Then if By is formally
divided into A, the resulting power series agrees with the power series
solution for the first (2n+l) terms. The polynomials A, and B, both

satisfy the relation

>
i

_ 2
n [l+(a2n-1+aan)x Ap1 - @op-18on2XPonp
AO = ao ’ Al = ao(l+alx ) ’ BO = 1 and Bl =1 + (al+32 )X . (2 .6 )
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Once the values a, , n =0,1,2,... are determined, the Pade’ approximations
(2.5) are readily computed. We present an algorithm to determine the a,'s .

Define the transformation

-1
Yp = ap(I+xype) © 5 Yo =¥ 5 2y = yu(0) . (2.7)

We assume that in (2.1)

Po(0) = Q5(0) = R,(0) = 8,(0) = vV (0) =W, (0) = Y,(0) ,

To(0) #0 and Xg(0) #0 . (2.8)

If (2.8) is not satisfied, one or two preliminary transformations of the type
(2.7) result in an egquation of the same form as (2.1) in which (2.8) is
satisfied.

Successive application of (2.7) to (2.1) and division by x at each
step gives

2 2 2 3 4
Pn(yﬁ) + Qnynyr'l * Rnynyrll * Snyﬁ T T V¥ F WYt Yy Y X 50, (2.9)
where the polynomial coefficients in (2.9) are given by
P41 = apxP

Qe = an[?anPn-anxQn-QxSn],

2
-ax S, ,

Rp+1
- 2
=" 8y [anQn+aan+Sn

nt+l

(Eq. (2.10) concluded next page)



Ar2. .3 2
- x [énQn+aan+ansn-SanxTn-eanxv

3
~adxil-axK, |

Tn+l n

-ir 2 2

Vp+p = X anPn-aﬁXQn-QanxSn+3anx2Tn+a%x Vn+6x2xn] ,

=
|

ntl = X [-ansn+anxTn+4xXn] 5

Yp+1 = XSXn >
and

Koy = X agTyraldvyradi X raky,, | - (2.10)

One can show by induction that all the polynomials in (2.10) are
defined at x = 0 , and that all the polynomials are zero at x = 0 except
Xp+1 @nd Tpyy . Further apyy 1is given by

Xp41(0)
847 = Youq(0) = - 2= | n = 1,2,3,... (2.11)
n+l n+l Tn+l(o) ) 2E 39

These values of a, determine the continued fraction (2.3) and hence the main
diagonal Pade’ approximations (2.5).

The following example shows the power of these approximations.
Consider the mass spring system with cubical stiffness,

y" + 1oy + 100y° =0, y(0) =1, y'(0) =0 . (2.12)

The solution to (2.12) is given by the Jacobian elliptic function y = cn(n,k)
where u = N110 t and k= = 5/11 .

Tables I and II compare the values of the Pade approximants and the
corresponding partial sums of the power series solution to the true solution.
Note that, since the solution to (2.12) has its smallest pole at approximately
u, = 1.91 , the power series is ineffective for computation if its argument
has magnitude close to 1.9, while the Pad€ approximations are very efficient
as is illustrated by the tables.



I=

0.1751
0.352¢4
0.5349
0.7247
0.9240
1.1327
1.3550
1.5837
1.8238

u

0.1751
0.3524
0.5349
0.7247
0.9240
1.1327
1.3550
1.5837
1.8238

TABIE I

MATN DIAGONAL PADE

¥y _(True) yl(t)
0.9848 0.9848
0.9396 0.9397
0.8658 0.8660
0.7655 0.7662
0.6417 0.6444
0.4993 0.5070
0.3399 0.3585
0.1724 0.2108
-0.0040 0.0668
TABLE II

N gTrue}

0.9848
0.9596
0. 8658
0.7655
0.6417
0.4993
0.3399
0.1724
-0.0040

TAYLOR'S SERIES EXPANSION

Three Terms

0.9848
0.9397
0.8666
0.7698
0.6587
0.5518
0.4778
0.4846
0.6360

Yo (t)

0.9848
0.9396
0.8658
0.7655
0.6417
0.4993
0.3397
0.1713
-0.0077

Five Terms

0.
0.
.8658
. 7656
.6427
.5061
3762
.3258
.5501

O O O OO OO0

0848
9396

ys(t)

0.9848
0.9396
0.8658
0.7655
0.6417
0.4994
0.3399
0.1724
-0. 0041

Seven Terms

. 9848
. 9396
. 8658
. 7655
.6418
.5002
.3495
2474
0.4720

OO0 OO O C OO0



Although the Pade approximations are more powerful than the partial
sums of the power series, they exhibit the same deficiency in that the accuracy
of the approximations decreases as the argument increases. To obviate the need
of constructing extremely high order epproximations to insure the desired ac-
curacy, we present a continuation technique which can be used to construct a
sequence of low order approximations that continues the solution from one
interval to another.

Let Yn,0 be an approximation to the solution of (2.1) which is
valid for O <z <1 . The transformation 2z = x+1 transforms (2.1) intoc an
equation of the same form with the initial condition yy-q = ¥z=3 - One can
now construct an approximation to the solution of the resulting equation,
yh,l ,which is valid for 1 <z s 2 . Continuing in this manner, one obtains
a sequence of approximations, yh,i each of which is valid for 1 =2z < i+l .

We remark that if the sequence of Pade approximants (2.5) converge
(which is the case if the power series (2.2) converges), one can compute the
response to (2.1) to any degree of accuracy, whereas in the other usual ap-
proximation procedures, i.e., perturbation schemes, etc., the degree of approx-
imation is of fixed accuracy.

IITI. INCLUSION OF DAMPING TERM

Here we derive approximations to the response of a dynamical system
in the absence of external forces with viscous damping and a nonlinear restor-
ing force.

1"

y +2ky'+ay+by2+cy3=0,y(0)=ao,y'(0)=bo,

0<2k<< 1, (3.1)

and no restrictions are placed on the relative magnitudes of a , b and c .

In the usual perturbation scheme either the nonlinear restoring
force or both the damping and nonlinear restoring force are considered to be
very small. If the coefficients b and c¢ are not small, this perturbation
scheme is not an effective means of obtaining good approximations to the
response of (1.1).

We now present an alternative technique which utilizes the approxima-
tions developed in Section II.



let
y=e v . (3.2)

Then (3.1) becomes

v o+ (a-kg)v + pe K2 4 cekED 2 g , v(0) =ag , v'(0) =kag + by . (3.3)

Since k 1is assumed to be very small, the coefficients in (3.3) are very
nearly constant over a small interval of time. We shall assign the constant
values B and C to the coefficients of v2 and v° in (3.3), respectively,
and construct the approximate solution, w, , to the resulting equation

W'+ (a-kE ) + BE + Ov0 = 0, w(0) =&y, w'(0) = kag + by , (3.4)
over a fixed time interval. The approximate solution to (3.1) is given by

Yp=e W, . (3.5)
We can then use the method of analytic continuation as described in Section II
to construct the approximations for a wide range of the argument.

We present three examples which illustrate the techniques described
in this report. The sixth order Pade approximant is used in all examples.

let y satisfy

y" + 0.10y' + 10y + 100y° = 0, y(0) =1, y'(0) =0 . (3.6)

The transformation (3.2) yields

-0.10t_3
v

v" + 0.9975v + 100e =0, v(0)=1, v'(0) =0.05 . (3.7)



Now let W be the solution to
w" + 0.9975w + 100w0 =0 , w(0) =1, w'(0) = 0.05 (3.8)

and let wg be the sixth order Pade approximation to the solution of (3.8).
Table III compares y(t) and wu(t) = e 0-OSt%y () .

TABIE III
t y(t) u(t) y(t)-u(t)
0.00 1. 0000 1.0000 0.0000
0.02 0.9782 0.9782 0.0000
0.04 0.9156 0.9155 0.0001
0.06 0.8189 0.8186 0.0003
0.08 0.6972 0.6966 0.0006
0.10 0.559% 0.5582 0. 0010
0.12 0.4121 0.4107 0.0014
0.14 0.2606 0.2589 0.0017
0.16 0.1076 0.1054 0.0022
0.18 -0.0456 -0.0484 0.0028
0.20 -0.1983 -0.2022 0.0039
0.22 ~0.3495 -0.3557 0.0062
0.24 -0.4971 -0.5081 0.0110
0.26 -0.6374 -0.6580 0.0206
0.28 -0.7643 -0.8030 0.0387
0.30 -0.8700 -0.9402 0.0702
For the second example, let
y" + 0.20y' + 5y + 10y° = 0, y(0) =1, y'(0) =0 . (3.9)
Then
v'" + 4.99v + 10e7920t3 = 9 | y(0) =1, v'(0) = 0.10 . (3.10)

- 10 -



where y =

-0.10t
e v .

We consider the related equation,

w" +4.99% + B2 =0, w(0) =1, w'(0) = 0.10 . (3.11)

Tables IV and V show that a judicious choice of B

in (3.11) results in a very

effective approximation. Table IV compares y(t) with uj = e'o'lOtw6(t)
where wg(t) is the sixth order Pade approximation to the solution of (3.11)

in which B = 10 .
is chosen to be the average of 10e~

t

OOOOOOOOOOOOOOOOOOOOQ0.0P

ERBS

.10

.14
.16
.18
.20
.22
.24
.26
.28
.30
.32
.34
.36
.58
.40
.42
.44
.46

In Table V, ux(t

1
Qo

OOOOOOOOOOOO0.00.00.00SD_OSD

8568

TABLE IV

~-11

'O’lOtWG(t) vhere the value of B

over the interval (0,0.2) .

=
|
~~

ct
S

1
(@]

OC)OOOOOOOOOOOOOOOOOSDOO}--J

. 0000
.9970
.9881
9733
.9530
L9273
. 8966
.8613
.8218
. 7786
L7320
.6825
.6305
.5764
.5206
.4634
.4050
.3458
.2859
.2256
.1650
<1044
. 0437
.0167

y(t)-uy(t)

0.0000
0.0000
0.0000
0. 0001
0.0001
-0.0007
0.0005
0.0008
0.0012
0.0015
0.0019
0.0025
0.0030
0.0035
0.0041
0.0046
0.0052
0.0058
0.0064
0.0069
0.0075
0.0080
0.0085
0.0089



TABLE V

t y(t) us(t) y(t)-us(t)
0.00 1. 0000 1.0000 0. 0000
0.02 0.9970 0.9970 0. 0000
0. 04 0. 9881 0.9882 -0.0001
0.06 0.9734 0.9737 -0. 0003
0.08 0.9531 0.9536 -0. 0005
0.10 0.9256 0.9282 -0.0026
0.12 0.8971 0.8979 -0.0008
0.14 0.8621 0.8630 -0.0009
0.16 0.8230 0.8240 -0.00L0
0.18 0.7801 0.7812 -0.0011
0.20 0.7339 0.7351 -0.0012
0.22 0.6850 0.6861 -0.0011
0.24 0.6335 0.6345 -0.0010
0.26 0.5799 0.5809 -0.0010
0.28 0.5247 0.5255 -0.0008
0.30 0.4680 0.4687 -0.0007
0.32 0.4102 0.4108 -0. 0008
0.34 0.3516 0.3519 -0.0003
0.36 0.2923 0.2925 -0.0003
0.38 0.2325 0.2325 0. 0000
0.40 0.1725 0.1723 0.0002
0.42 0.1124 0.1120 0. 0004
0.44 0.0522 0.0516 0. 0006
0.46 -0.0078 ~0.0086 0.0008
0.48 -0.0675 ~0.0686 0.0009
0.50 -0.1269 -0.1282 0. 0013

We close the section by giving an example of the method of analytic
continuation. We continue the solution of (3.11) as given in Table IV. Using
the tabular value from Table II for u(t) at t = 0.1 as the true value, wve
make the transformation t = 0.1 + 1 in (3.11) and u(T)szo = u(0.1) . The
table below gives the sixth order Pade approximations to the solution of the
resulting equation. Here we choose B = lOe’o‘O

-12 -



jct

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

Note that these values are much better than those in Table IV.

. 9276
.8971
.8621
.8230
. 7801
. 7339
.6849
.B6335
.5799
.5247
.4680
L4102
.3516
.2923
.2325
0.1725

C OO0 O0OOCO0O0O0O0O0O00O0OO0OO0O0o

TABLE VI

u(t)

ocleolNeoNoNoNoNeNolNololololNo o e RNe

L9273
.8968
.8617
.8226
L7797
. 7335
.6844
.6328
L5791
.5236
.4668
.4088
.5499
2904
.2305
L1705

X!t!-u{t}

.0003
. 0003
. 0004
. 0004
. 0004
. 0004
.0005
. 0007
. 0008
.0011
.0012
.0014
.0017
.0019
. 0020
.0022

elleNeoNeolNoNoNelNolNoNololNo e o OGN,

Thus

the combination of analytic continuation and judicious selection of the value

of B in (3.11) can be expected to yield very good approximations to the

solution of (3.10).

- 13 -
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